Folic acid stimulates proliferation of transplanted neural stem cells after focal cerebral ischemia in rats.
نویسندگان
چکیده
Folic acid (FA) stimulates neural stem cell (NSC) proliferation in vitro and enhances hippocampal neurogenesis in rats after middle cerebral artery occlusion (MCAO). The effect of FA supplementation on exogenous NSCs transplanted in MCAO rats was observed to determine if FA can stimulate NSC replacement after focal cerebral ischemia. Rats were randomly assigned to 3 groups: MCAO; MCAO and exogenous NSC transplantation (MCAO+NSCs); and MCAO, NSC transplantation and FA (MCAO+NSCs+FA). FA (0.8 mg/kg) or vehicle was administered by gavage daily for 28 days before MCAO and 23 days afterward. NSCs were labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (BrdU) prior to transplantation into the striatum, contralateral to the ischemic zone, at 2 days post-MCAO. Magnetic resonance imaging tracking and fluorescent immunohistochemistry, as well as measurement of serum folate concentration, were performed at intervals up to 21 days after transplantation. FA supplementation caused sustained increases of 400-600% in serum folate concentration. Magnetic resonance images indicated that SPIO-labeled NSCs were more abundant at the transplantation and ischemic brain sites in MCAO+NSCs+FA rats than in MCAO+NSCs rats. Similarly, immunohistochemistry showed that the numbers of Sox-2/BrdU double positive cells at the transplantation and ischemic sites were higher in the rats that received FA. In conclusion, after focal cerebral ischemia, FA supplementation stimulates transplanted NSCs to proliferate and migrate to ischemic sites.
منابع مشابه
Bone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia
Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...
متن کاملEffects of MK-801 concentration on cell proliferation in rats with focal cerebral ischemia-reperfusion.
We explored the relationship between MK-801 concentration and neural stem cell proliferation in rats with focal cerebral ischemia-reperfusion (FCIR). A total of 60 male Sprague Dawley rats were randomized into control (six rats), sham-operation (six rats), operation (12 rats), and MK-801 groups. The MK-801 group comprised 36 rats that were subjected to different doses of MK-801 (0.2, 0.4, 0.6, ...
متن کاملRepetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation via the Regulation of MiR-25 in a Rat Model of Focal Cerebral Ischemia
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been studied over the past decade to determine whether it has a therapeutic benefit on focal cerebral ischemia. However, the underlying mechanism of rTMS in this process remains unclear. In the current study, we investigated the effects of rTMS on the proliferation of adult neural stem cells (NSCs) and explored microRNAs (miRN...
متن کاملBasic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury.
A little is known about the proliferation and fate of neural stem cells in the subventricular zone (SVZ) after cerebral ischemia. However, how endogenous neural stem cells are activated in the premature brain is not clear, although basic fibroblast growth factor (bFGF) is important in neurogenesis. To investigate the effect of bFGF on the proliferation and differentiation of neural stem cells a...
متن کاملSurvival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model.
BACKGROUND Although administration of various stem cells has shown promise in stroke models, neural stem cells (NSCs) derived from human induced pluripotent stem cells (iPSCs) have advantages over other cell types. We studied whether these cells could survive, differentiate, and improve stroke recovery in an ischemic stroke model. METHODS Human iPSCs were induced in vitro to an early NSC stag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of nutritional biochemistry
دوره 24 11 شماره
صفحات -
تاریخ انتشار 2013